Mortality Prediction For COVID-19 Patients Based on Demographic, Typical Laboratory Results, and Clinical Data

Husnul Khuluq, Anwar Sodik

1Department Of Pharmacy, Faculty of Health Science, Universitas Muhammadiyah Gombong, 54413, Indonesia

*E-mail: Husnulkhuluq@unimugo.ac.id

ARTICLE INFO

Keywords: death risk feature; hospital mortality prediction; comorbidities; bivariate analysis; prediction model;

ABSTRACT

Background: Timely identification of patients with a high risk of mortality from COVID-19 can make a big improvement in triage, bed placement, time saving, and even outcome. Objectives: construct and evaluate individual mortality risk estimates based on anonymised demographic, clinical, and laboratory data at admission, as well as to find out the probability of death. Materials and methods: Data included 681 patients, obtained from two Muhammadiyah Hospitals in Kebumen, Central Java, Indonesia. Data was collected between January 2020 to December 2022. The medical records were examined to identify the demographic data, vital signs, clinical data and typical laboratory test. In bivariate analysis, the Chi-square test was used. Results: Patients were 48.02% males, and mortality was 18.05%. The five top predictors were Respiratory Failure (OR 7.420, 95% CI (1.169-47.103)), Myocardial Infarction (OR 1.639, 95% CI (0.881-3.050)), D-dimer (OR 1.493, 95% CI (1.112-2.004)), Chronic Kidney Disease (OR 1.493, 95% CI (1.112-2.004)), Lymphocyte (OR 1.397, 95% CI (1.232-1.584)). Conclusions: Comorbidities including chronic kidney disease, myocardial Infarction and DM 1 type; laboratory test results including D-dimer, lymphocyte, neutrophil, creatinine, leukocytes, glucose, hemoglobin; age, SPO2 and respiratory failure were associated with and can predict mortality in COVID-19 patients.

INTRODUCTION

The pandemic caused by the coronavirus disease 2019 (COVID-19) is still having an effect on people all over the world. As of 24 April 2023, the World Health Organization (WHO) has received reports of more than 763 million total confirmed cases and 6.9 million deaths worldwide((COVID-19), 2023). The three provinces in Indonesia with the highest number of confirmed cases were DKI Jakarta, West Java, and Central Java.(Sri Hartutik, 2023) As of the 24th of April 2023, more than 13.3 billion doses of the COVID-19 vaccination had been administered all over the world((COVID-19), 2023). However, around 28,000 additional COVID-19 mortality have been identified in last 28 days(Dong, Du and Gardner, 2023). Despite continuing efforts to develop vaccines and antivirals that are effective against new SARS-CoV-2 strains, there are additional challenges to be resolved(Herscu et al., 2022)
The evidence indicates that severe outcomes of COVID-19 are usually correlated with getting older, men gender, and clinical conditions such as hypertension, diabetes, obesity, heart illness, chronic renal disease, and liver disease (Petrilli et al., 2020)(Lewnard et al., 2020)(Richardson et al., 2020)(F. Zhou et al., 2020)(Oliveira et al., 2021).

Another factors regarding mortality in COVID-19 patients were laboratory findings. A systematic review by Setiati et al., (2020) demonstrates that laboratory test including lymphopenia, D-dimer and creatinine were risk factor for mortality of COVID-19 patients. Neutrophil dysfunction and abnormal thrombosis may have an impact in the pathogenesis of severe COVID-19 and increase the risk of mortality(Narang et al., 2023). Both the leucocyte count and the neutrophil count were important predictors of mortality in both non-elderly and older people patients(Ghobadi et al., 2022). INR, D-Dimer and ferritin were biomarkers that accurately predicted the mortality of COVID-19(Huyut and Huyut, 2023). There was an increase in the risk of death associated with Hb values that were either extremely low or extremely high(Patiño-Aldana et al., 2022). Hemoglobin, albumin, lymphocytes, and platelets can accurately predict in-hospital mortality for COVID-19 patients (Kılıç, Ak and Alışkan, 2023).

Nevertheless, despite the amount of evidence indicating a correlation between clinical data and laboratory findings and poorer results of COVID-19, there is a lack of evidence originating from Indonesia, particularly central Java. The relevant studies about mortality in COVID-19 patients in Indonesia were carried out in Padang (Usman and Katar, 2023), Jakarta (Febrianti et al., 2023) and Surabaya (Awwaliyah, Hotimah and Shimabukuro, 2022).

Therefore, the objective of this study was to investigate the role of age, gender, laboratory test results and comorbidities on the outcome of hospitalized COVID-19 patients in PKU Muhammadiyah Hospital in Kebumen, Central Java.

METHODS AND MATERIALS

Study design and research sample

This retrospective study conducted at two PKU Muhammadiyah hospitals in Kebumen, central Java. The study included 681 who were hospitalized between January 2020 and December 2022. Slovin's formula was used to calculate the sample size based on a
population size (N) about 4099, where \( n = \) required sample size

\[
n = \frac{N}{1 + Ne^2}
\]

With a 95% CI and a 5% margin error. Therefore, we required a sample size of at least 364.

**Inclusion and exclusion criteria**

The inclusion criteria were: 1) positive results of an RT PCR/Molecular Rapid Test (TCM)SARS-CoV-2 collected from a nasal/nasopharyngeal swab; 2) individuals who had been hospitalized; 3) Age > 18 years; Excluded from the analysis were patients who died during hospitalization, pregnancy and those who didn't have baseline data.

**Operational definition**

The variables in this study were separated into several independent variables: age, gender, hypertension, diabetes mellitus, chronic renal disease, history of coronary artery disease (CAD), chronic obstructive pulmonary disease (COPD), chronic kidney disease (CKD), and laboratory findings. A dependent variable, which is the outcome of COVID-19 patients who have been confirmed to be clinically critical (survival or non-survival).

**Research ethics approval**

The study has obtained ethical approval from the PKU Muhammadiyah Gamping Hospital Ethical Research Committee 003.6/II.3.AU/F/KEPK/I/2023.

**Data analysis**

The results of the univariate analyze are presented as percentages and frequencies. In bivariate analysis, the Chi-square test was performed and the risks ratio was calculated. If \( p < 0.05 \), it is considered to be significant. SPSS version 25.0 was used to analyze the data.

**RESULTS AND DISCUSSION**

To avoid biases, patients under 18 years was not included in this study. Treatment and therapies for COVID-19 patients were different between adult and children(Panda et al., 2021)

Table 1 shows gender and comorbid Pneumonia, Hypertension, DM 2 type, asthma, anemia, Cerebral Infarction, Congestive Heart Failure had no association with mortality in COVID-19 patients. But, there was an association between comorbid Chronic Kidney Disease, diabetes mellitus type 1 and Myocardial Infarction. (\( p < 0.05 \)). Almost all laboratory test result including Lymphocyte, Leukocytes, Neutrophil, D-dimer, Glucose, Creatinine and Hemoglobin were have association with
mortality in COVID-19 patients (p<0.05). Lymphocyte (1.397). Myocardial
Significantly, the four top odds ratios were Infarction and D-dimer were the top
Respiratory Failure (7.42), Myocardial predictor among comorbidities and
Infarction(1.639), D-dimer laboratory test results (figure 1).
(1.559), Chronic Kidney Disease (1.493),

**Table 1. Bivariat analysis of Demographic, comorbidity, laboratory findings**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Survived</th>
<th>Non survived</th>
<th>OR (95%CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Comorbidity</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pneumonia</td>
<td>28 (4.5)</td>
<td>6 (0.9)</td>
<td>0.989 (0.843-1.161)</td>
<td>0.895</td>
</tr>
<tr>
<td>Hypertension</td>
<td>97 (15.6)</td>
<td>27 (4.3)</td>
<td>1.051 (0.951-1.162)</td>
<td>0.300</td>
</tr>
<tr>
<td>Chronic Kidney Disease</td>
<td>20 (3.2)</td>
<td>16 (2.5)</td>
<td>1.493 (1.112-2.004)</td>
<td>0.000*</td>
</tr>
<tr>
<td>DM 2 type</td>
<td>54 (8.7)</td>
<td>12 (1.9)</td>
<td>0.996 (0.883-1.122)</td>
<td>0.944</td>
</tr>
<tr>
<td>DM 1 type</td>
<td>113 (18.2)</td>
<td>50 (8.0)</td>
<td>1.231 (1.105-1.371)</td>
<td>0.000*</td>
</tr>
<tr>
<td>Asthma</td>
<td>8 (1.2)</td>
<td>0 (0.0)</td>
<td>0.813 (0.784-0.843)</td>
<td>0.193</td>
</tr>
<tr>
<td>Anemia</td>
<td>5 (0.8)</td>
<td>0 (0.0)</td>
<td>0.814 (0.785-0.844)</td>
<td>0.358</td>
</tr>
<tr>
<td>Respiratory Failure</td>
<td>1 (0.1)</td>
<td>8 (1.2)</td>
<td>7.420 (1.169-47.103)</td>
<td>0.000*</td>
</tr>
<tr>
<td>CHF</td>
<td>91 (14.7)</td>
<td>27 (4.3)</td>
<td>1.069 (0.962-1.188)</td>
<td>0.178</td>
</tr>
<tr>
<td>Myocardial Infarction</td>
<td>5 (0.8)</td>
<td>5 (0.8)</td>
<td>1.639 (0.881-3.050)</td>
<td>0.023*</td>
</tr>
<tr>
<td><strong>Vital sign and Laboratory Result</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Blood Pressure</td>
<td>103 (16.6)</td>
<td>33 (5.3)</td>
<td>1.095 (0.988-1.213)</td>
<td>0.053</td>
</tr>
<tr>
<td>SPO₂ &lt;95%</td>
<td>200 (32.3)</td>
<td>75 (12.1)</td>
<td>1.202 (1.108-1.304)</td>
<td>0.000*</td>
</tr>
<tr>
<td>Lymphocyte &lt;22 or &gt;40 mg/dL</td>
<td>98 (15.8)</td>
<td>59 (9.5)</td>
<td>1.397 (1.232-1.584)</td>
<td>0.000*</td>
</tr>
<tr>
<td>Leukocytes &lt;3.800 or &gt;10.500 mg/dL</td>
<td>132 (21.3)</td>
<td>62 (10.0)</td>
<td>1.277 (1.152-1.414)</td>
<td>0.000*</td>
</tr>
<tr>
<td>Thrombocytes &lt;150,000 or &gt;450,000 mg/dL</td>
<td>29 (4.6)</td>
<td>6 (0.9)</td>
<td>0.983 (0.841-1.148)</td>
<td>0.832</td>
</tr>
<tr>
<td>Neutrophil &lt;50 or &gt;70</td>
<td>235 (38.0)</td>
<td>102 (16.5)</td>
<td>1.334 (1.236-1.439)</td>
<td>0.000*</td>
</tr>
<tr>
<td>D-dimer &gt;0.5 mg/dL</td>
<td>23 (3.7)</td>
<td>20 (3.2)</td>
<td>1.559 (1.177-2.064)</td>
<td>0.000*</td>
</tr>
<tr>
<td>Glucose &lt;70 or &gt;120 mg/dL</td>
<td>201 (32.5)</td>
<td>73 (11.8)</td>
<td>1.186 (1.094-1.285)</td>
<td>0.000*</td>
</tr>
<tr>
<td>Creatinine &lt;0.6 or &gt;1.4 mg/dL</td>
<td>36 (5.8)</td>
<td>20 (3.2)</td>
<td>1.292 (1.059-1.575)</td>
<td>0.001*</td>
</tr>
<tr>
<td>Hemoglobin &lt;12 mg/dL</td>
<td>148 (23.9)</td>
<td>51 (8.2)</td>
<td>1.135 (1.038-1.242)</td>
<td>0.002</td>
</tr>
<tr>
<td><strong>Demographics</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender (male)</td>
<td>267 (43.2)</td>
<td>60 (9.7)</td>
<td>0.996 (0.928-1.070)</td>
<td>0.921</td>
</tr>
<tr>
<td>Age &gt;65</td>
<td>132 (21.3)</td>
<td>54 (8.7)</td>
<td>1.204 (1.091-1.329)</td>
<td>0.000*</td>
</tr>
</tbody>
</table>
*p<0.05 considered significant; based on Chi-square test. DM2 type: Diabetes Mellitus type 2, DM 1 type: Diabetes Mellitus type 1, SPO2: Peripheral oxygen saturation, CHF: Congestive Heart Failure, OR: Odd Ratio, CI: Confidence Interval

In this study, Respiratory Failure was the variable with the highest odds ratio, (OR 7.420, CI(1.169-47.103). There is a correlation between respiratory symptoms, such as respiratory failure and low oxygen levels (SPO2 <90%), and a higher risk of mortality. Additionally, this area of study has been investigated in United States 1461 populations; low oxygen saturation and elevated respiratory rate on admission, are risk factors for in-hospital mortality (Bahl et al., 2020).

According to the meta-analysis and systematic review carried out by Mesas et al., in 2020, higher creatinine is correlated with raised mortality in COVID-19 patients. Patients who were identified as having severe illness had significantly greater levels of serum creatinine and urea than patients who were identified as having mild or moderate illness. (Cheng et al., 2020)Creatinine and urea levels that are higher than normal in patients with COVID-19 may be an indication of abnormal renal function, but they may also be an indication of poor glomerular filtration related to heart failure(Geri et al., 2021).

In this research, the presence of comorbidities including Chronic Kidney Disease, Diabetes Mellitus type 1 and type 2, Diabetes Mellitus type 1, SPO2: Peripheral oxygen saturation, CHF: Congestive Heart Failure, OR: Odd Ratio, CI: Confidence Interval
Myocardial Infarction had only a minor impact on the prediction of the mortality risk (table 1). These findings consistent with the result from different research (Tezza et al., 2021), but only partially consistent with those of international research, which shows that comorbidities also have a major impact in mortality risk prediction (Kim, Jin and Eom, 2021)(Kar et al., 2021)(Usman and Katar, 2023).

Our findings shows that type 1 diabetes had an increased risk than type 2 diabetes. This could have several causes. Type 1 and type 2 diabetes different in COVID-19-associated mortality due to the various causes and Pathophysiology, variations of complications or iatrogenic harms (including hypoglycemia), therapies, frequency, and time period of glycemic, and the effects of comorbidities that were either ot taken into account or weren't taken into account appropriately(Barron et al., 2020). People with diabetes have a condition of chronic low-grade inflammation, which established the foundation for subsequent increases of inflammatory cytokines in the COVID-19 population. In addition, immunological dysregulation in diabetes mellitus reduces the host's capacity to fight off the disease, which results these population in poorer infection outcomes(Feldman et al., 2020)(Berbudi et al., 2020).

In this research, among comorbidity, myocardial infarction has the higher Odds Ratio. (Figure 1). Elevated level of neutrophil will increased platelet activity, deficient fibrinolysis and larger reduced anticoagulant function of the endothelium(B. Zhou et al., 2020)(Alnima et al., 2022).

A Systematic Review and Meta-analysis including 348 studies by Chung et al., (2021) indicate that individual who have Chronic Kidney Disease (CKD) but do not require kidney substitution treatment or people who have received a kidney or pancreas/kidney transplant may have a fewer possibility of contracting COVID-19 than those who are getting continuous dialysis. People who have CKD and also have COVID-19 may have a greater mortality rate than people who have CKD but do not have COVID-19.

There is evidence that patients with CKD have microcirculatory dysfunction, which may make these patients more susceptible to COVID-19. Patients who have CKD have a increased risk of serious consequences associated with lung infections in general, which may be another reason why CKD may be correlated with COVID-19-related complications in some
cases (Sörling et al., 2023). It is reasonable that the activating of the renin-angiotensin system that occurs in CKD is the aspect that determines the risk to COVID-19. Patients who have CKD are therefore more likely to experience a more severe manifestation of the disease (Nangaku and Fujita, 2008).

In our study, leukocyte, neutrophil, creatinine, and d-dimer increases upon admission were significant mortality risk factors. (Table 1)

International study conducted in China suggest that higher neutrophil have been correlated with a higher risk of death in patients with COVID-19 (Xu et al., 2020). Neutrophils are cells that are a part of the immune system and play an essential function in the body's defense against microbial and fungal illnesses (Veras et al., 2020). However, the role that they play in the immune system's defense against the virus is not completely known. Neutrophil infiltration into the lungs has been described in human investigations with COVID-19, regardless of the reality that the relevance of neutrophils in animal research has not been detected (Tomar et al., 2020).

When compared to patients who only had a mild case of COVID-19 infection, those who had severe COVID-19 infection had significantly higher leukocyte and neutrophil counts, and these counts continued to rise during the course of the infection (Yamada et al., 2020) (Lin Zhang et al., 2020).

In COVID-19, elevated total leucocyte counts have been correlated with an elevated risk of mortality as reported by Zhu et al (Zhu et al., 2021). The primary reason for the rise in white blood cell count was an increase in the number of neutrophils (Thunghienhong and Vattanavanit, 2023).

It is possible to explain this activation process by referring to the hyper inflammatory state and the cytokine storm (Palladino, 2021).

In the case of thrombotic event assessment, the D-dimer is a recognized and commonly utilized laboratory measure (Lippi and Plebani, 2020). It has been found that between 36 and 43% of COVID-19 patients had an elevated level of the D-dimer (Simes et al., 2018). A systemic review and meta analysis by Baris et al (2020) suggest that Elevated blood amounts of D-dimer on admission are substantially associated with the level of severity of COVID-19 and may be predictive of mortality in hospitalized patients.

Several research have revealed a relationships between greater D-dimer amounts and an increased risk of mortality in the COVID-19 patient population (Yu et al., 2020) (Litao Zhang et al., 2020) (Weitz et
It has been found that between 36% and 43% of COVID-19 had an increased level of the D-dimer (Simes et al., 2018). In the case of thrombotic event assessment, the D-dimer is a recognized and commonly utilized laboratory measure (Lippi and Plebani, 2020). It is now commonly understood that COVID-19 individuals have a hyper coagulable state, and that increases in D-dimer levels are an adaptation to the pro thrombotic phenomenon that is occurring in these patients' cardiovascular systems (Hayiroğlu, Çınar and Tekkeşin, 2020).

Patients who were identified as having severe illness had significantly greater levels of serum creatinine and urea than patients who were identified as having mild or moderate illness. Creatinine and urea levels that are higher than normal in patients with COVID-19 may be an indication of abnormal renal function, but they may also be an indication of poor glomerular filtration related to heart failure (Geri et al., 2021).

CONCLUSIONS AND SUGGESTIONS
Comorbidities including chronic kidney disease, myocardial Infarction and DM 1 type; laboratory test results including D-dimer, lymphocyte, neutrophil, creatinine, leukocytes, glucose, hemoglobin; age, SPO2 and respiratory failure were associated with and may decide predict mortality in confirmed COVID-19 patients.

In future research, we suggest constructing a specific multi-item scoring system to predict mortality in COVID-19 patients.

In future times, if there is another COVID-19 pandemic or another infectious disease pandemic, medical institutions be capable of figure out patients who are more susceptible to get sicker or even die based on data from comorbidities, laboratory test results and age that are closely linked to whether or not COVID-19 patients die in the hospital. After analyzing the probabilities of death and serious illness in COVID-19 patients who are admitted to the hospital, medical institutions can better use their limited medical resources.

Furthermore, governments should help medical facilities develop shared databases of people' physiological indicator data whereas protecting their privacy.

LIMITATION
First, There was no information about radiology results in the data used in this study. Because the treatments that patients receive can have substantial effects on their prognosis,
which could have been useful as a predictor (Yuan et al., 2020) (Feng et al., 2020). Second,

FUNDING

we presumed that all of these patients were receiving standard therapy.

REFERENCES


Available at: https://doi.org/10.3389/fmed.2022.916453.


Sörling, A. et al. (2023) ‘Association Between CKD, Obesity, Cardiometabolic Risk Factors, and Severe COVID-19 Outcomes.’, Kidney international reports, 8(4), pp. 775–784. Available at: https://doi.org/10.1016/j.ekir.2023.01.0


Journal of Infectious Diseases, 17(1), pp. 55–59. Available at: https://doi.org/10.21010/Ajidv17i1.5.


Zhang, Lin et al. (2020) ‘Retrospective analysis of clinical features in 134 coronavirus disease 2019 cases.’, Epidemiology and infection, 148, p. e199. Available at: https://doi.org/10.1017/S095026882002010.

Zhou, B. et al. (2020) ‘Duration of Viral


Information from Internet: